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Abstract. We present a model for simulating atomic dipole dephasing within the Monte-Carlo wave func-
tion formalism which leads to the same results as the standard density-matrix formalism. In this model
dipole dephasing processes are accounted by quantum-jumps into one of the atomic energy eigenstates.
This fact allows us to obtain analytical expressions for the effects of elastic collisions on the various phys-
ical processes responsible for amplification without population inversion in a cascade three-level atomic
configuration.

PACS. 42.50.-p Quantum optics – 32.80.-t Photon interactions with atoms – 02.70.Lq Monte-Carlo
and statistical methods

1 Introduction

In general, it is not possible to describe in terms of a
simple atomic wave-function the dynamics of a system
consisting of an atom interacting with a coherent electro-
magnetic field when dissipative processes due to coupling
with a reservoir are included. Alternatively, one can con-
sider the evolution of the reduced atomic density-matrix,
thus allowing to solve the problem for an averaged en-
semble. The reduced density-matrix gives a quantitative
description of the behavior of the system but does not
provide, in general, a clear physical interpretation of the
mechanisms involved in the light-matter interaction. Re-
cently, a Monte-Carlo Wave Function (MCWF) formal-
ism [1–4] has been proposed as a model to picture the
dynamics of an atom submitted to coherent laser fields
and to dissipative processes. In this formalism the time
evolution of the wave-function of a single atom, a so-
called quantum trajectory, is calculated by integrating the
time-dependent Schrödinger equation using an effective
non-Hermitian Hamiltonian. Incoherent processes are in-
corporated as quantum-jumps or wave-function collapses
occurring at random times. Thus, a quantum trajectory
consists of a series of coherent evolution periods sepa-
rated by quantum-jumps occurring at random times. The
MCWF formalism, which is equivalent to the density-
matrix formalism when averaged over many realizations
of the trajectories, is interesting at least for two different
reasons: (i) in the wave-function treatment of a system
belonging to a N dimensional Hilbert space the number
of variables is ∼ N while in the density-matrix is ∼ N2

and (ii) it provides new insights into the underlying phys-
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ical mechanisms. The MCWF formalism has been applied
successfully to a large number of problems in quantum op-
tics ranging from laser cooling [5] and the micromaser [6]
to amplification without inversion [7–10] in connection
with the quantum Zeno effect [11]. Also, in some limited
cases, to describe systems coupled to non-Markovian reser-
voirs [12].

Based on the MCWF formalism, Cohen-Tannoudji
et al. [7] derived general statistical properties of the co-
herent evolution periods occurring between two succes-
sive quantum-jumps. For this analysis to be applicable
two conditions are required: (i) the number of relevant
atomic states involved in the dissipative processes has to
be finite, and (ii) the Hamiltonian has to be time inde-
pendent. Using this procedure, Cohen-Tannoudji et al. [7]
obtained analytically, i.e. without requiring explicitly a
Monte-Carlo simulation, the respective contributions of
the various physical mechanisms responsible for inversion-
less amplification of a probe field in a driven Λ-type three-
level system [13] in the presence of incoherent pump pro-
cesses and spontaneous emission.

Another important cause of dissipation is dipole de-
phasing due to, e.g., elastic collisions. Nevertheless, the
analytical method developed in [7] cannot be applied to
study the influence of atomic dipole dephasing, if these
processes are introduced in the standard way described
in [4]. The reason is that in [4], the quantum-jumps
associated with dipole dephasing collapse the atomic
wave-function, that is in general a linear superposition
of atomic energy eigenstates, into another superposition
state. Therefore, the number of atomic states involved in
these dissipative processes is infinite, even for a finite num-
ber of atomic energy eigenstates. In this paper we present
an alternative method to introduce dipole dephasing
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Fig. 1. Damped Rabi oscillations for the two-level system dis-
played in the inset for an average of 500 MCWF simulations
(solid line) and corresponding density-matrix solution (dotted
line). The parameters are: Ω = 5γab, γ0 = 0.5γab and ∆ = 0.

processes in the MCWF formalism in such a way that
these processes collapse the atomic wave-function into one
of the atomic energy eigenstates and, therefore, the analy-
sis of reference [7] can be applied in a straightforward way
to obtain the effects of the dipole dephasing processes on
the different physical processes responsible for amplifica-
tion or absorption of light by atoms.

In Section 2 we present our alternative method to
simulate atomic dipole dephasing in the MCWF formal-
ism and demonstrate its equivalence with the density-
matrix formalism. In Section 3, we apply the quantum-
jump method developed in reference [7] to study the role
of elastic collisions in inversionless amplification in a cas-
cade three-level system. Finally, we summarize the main
results of this paper in the conclusions.

2 Model

Let us consider a two-level system (inset Fig. 1) being |a〉
(|b〉) the excited (ground) state and |φ〉 = ca |a〉 + cb |b〉
the wave-function of the atomic system. In reference [4]
the quantum-jumps associated with dipole dephasing cor-
respond to change the sign of cb and to leave the sign of ca
unchanged. This MCWF procedure to simulate dipole de-
phasing is easy to implement numerically and, when aver-
aged over a large ensemble of simulations, gives the same
results as the density-matrix formalism. Nevertheless, it
has the inconvenience that quantum-jumps associated to
dipole dephasing collapse the wave-function to an infi-
nite number of different final states. As previously stated,
this fact prevents to study analytically the stochastic se-
quence of coherent evolution periods taking place between
quantum-jumps. In addition, it is not possible to associate
these dipole dephasing processes to exchange of quanta
between the two-level atom and the electromagnetic field
since the state appearing when a dephasing process col-
lapses the wave-function is not an energy eigenstate.

Consider now a multilevel atomic system driven by
coherent laser fields. The atomic wave-function at time t
is |φ(t)〉 =

∑
n cn(t) |n〉, |n〉 being the eigenstates of the

atomic Hamiltonian. Dipole dephasing processes do not
change the internal energy of the system. For this reason,
we propose to model dephasing processes as random col-
lapses of the wave-function in any of the states |n〉 with
a probability proportional to a common dephasing rate,
γ0, times the population of the corresponding state |n〉.
As usual in the MCWF formalism, the Hamiltonian of the
system has to be modified by considering an effective non-
hermitian Hamiltonian: Heff = H0 − (i/2)γ0

∑
n |n〉 〈n|,

where H0 is the Hamiltonian describing, in the absence of
dissipative processes and in the rotating wave approxima-
tion, the evolution of the coherently driven atomic system
(~ = 1).

To be more specific, let us consider a two-level system
(see inset to Fig. 1) in interaction with a coherent field
with Rabi frequency 2Ω and detuning ∆, and subjected
to two different sources of dissipative processes: sponta-
neous emission with a relaxation rate γab and dipole de-
phasing, e.g. elastic collisions, with a rate γ0. At time t,
the normalized wave-function of the two-level system is
|φ(t)〉 = ca(t) |a〉 + cb(t) |b〉. At t + dt, the wave-function
evolves towards one of these states:

|φ(t+ dt)〉 =


∣∣φ(0)(t+ dt)

〉∣∣φ(1a)(t+ dt)
〉∣∣φ(1b)(t+ dt)
〉∣∣φ(1c)(t+ dt)
〉 · (1)

The first state
∣∣φ(0)(t+ dt)

〉
accounts for a continuous

coherent evolution, i.e. time evolution without wave-
function collapse. This coherent evolution corresponds to
the non-unitary evolution given by

∣∣φ(0)(t+ dt)
〉

= (1 −

idtH
(1)
eff ) |φ(t)〉 with the following effective non-Hermitian

Hamiltonian

H
(1)
eff = H0 − (i/2)(γab + γ0)σ+σ− − (i/2)γ0σ

−σ+,

being σ+ = |a〉 〈b| and σ− = |b〉 〈a| the atomic raising and
lowering operators, respectively. The other three states in
(1) account for the wave-function collapses or quantum-
jumps. There are three different possible quantum-jumps
associated with: (i) spontaneous emission from |a〉 to
|b〉 (ii) dipole dephasing collapsing the wave-function in
|b〉 proportionally to the population of state |b〉, and
(iii) dipole dephasing collapsing the wave-function in
|a〉 proportionally to the population of state |a〉. Thus,∣∣φ(1a)(t+ dt)

〉
∝ |b〉 corresponds to the atomic wave-

function collapse in the ground state associated with the
spontaneous emitted photon and its norm is given by〈
φ(1a)(t+ dt)|φ(1a)(t+ dt)

〉
= dpa = γabcac

∗
adt

= γabdt 〈φ(t)| σ+σ− |φ(t)〉 .
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For the quantum-jumps associated with dipole dephasing
we have

∣∣φ(1b)(t+ dt)
〉
∝ |b〉 with〈

φ(1b)(t+ dt)|φ(1b)(t+ dt)
〉

= dpb = γ0cbc
∗
bdt

= γ0dt 〈φ(t)| σ−σ+ |φ(t)〉 ,

and
∣∣φ(1c)(t+ dt)

〉
∝ |a〉 with〈

φ(1c)(t+ dt)|φ(1c)(t+ dt)
〉

= dpc = γ0cac
∗
adt

= γ0dt 〈φ(t)| σ+σ− |φ(t)〉 .

Therefore, the total probability of a quantum-jump in the
time interval dt is dp = dpa+dpb+dpc and, consequently,〈
φ(0)(t+ dt)|φ(0)(t+ dt)

〉
= 1− dp.

As usual in the MCWF procedure, a pseudorandom
number ε is used to propagate the wave-function from
an initial time t to t + dt. Consider the normalized two-
level atomic wave-function |φ(t)〉 and a time interval small
enough such that the probability amplitudes nearly have
not evolved, i.e. dt� Ω−1, and for which there has been
at most one-quantum-jump, i.e. dt� γ−1

ab , γ
−1
0 . For ε > dp

the wave-function at t+dt is the normalized wave-function∣∣φ(0)(t+ dt)
〉
, i.e. |φ(t+ dt)〉 = µ(1− idtH(1)

eff) |φ(t)〉 with

µ = 1/
√

(1− dp). For ε < dp we use another pseudoran-
dom number to collapse the wave-function in the ground
state |b〉 or the excited state |a〉 with respective proba-
bilities (dpa + dpb)/dp and dpc/dp. We will demonstrate
now that this MCWF approach, when averaged over a
large number of simulations, is equivalent to the standard
density-matrix formalism. Let us consider the operator
ρ(t) ≡ |φ(t)〉 〈φ(t)|. The average of ρ(t+ dt) over different
outcomes of MCWF simulations reads:

ρ(t+ dt) = (1− dp)µ2
(

1− idtH(1)
eff

)
|φ(t)〉 〈φ(t)|

×

[
1 + idt

(
H

(1)
eff

)†]
+ (dpa + dpb) |b〉 〈b|+ dpc |a〉 〈a| .

(2)

Substituting the explicit value of dpi (i = a, b, c) in the

above equation and neglecting terms proportional to (dt)
2
,

one obtains:

ρ(t+ dt) ' ρ(t)− idt

[
H

(1)
effρ(t)− ρ(t)

(
H

(1)
eff

)†]
+ γabdtσ

−ρ(t)σ+ + γ0dt(σ
−σ+ρ(t)σ−σ+

+ σ+σ−ρ(t)σ+σ−) (3)

where ρ(t) is the average of |φ(t)〉 〈φ(t)| over different
MCWF simulations. Therefore, equation (3) gives:

dρ

dt
= −i [H0, ρ] +

∧
A +

∧
B (4)

with:
∧
A = −

γab

2

(
ρσ+σ− + σ+σ−ρ− 2σ−ρσ+

)
, (5a)

∧
B = −

γ0

2

[
ρ
(
σ+σ− + σ−σ+

)
+
(
σ+σ− + σ−σ+

)
ρ

−2
(
σ−σ+ρσ−σ+ + σ+σ−ρσ+σ−

)]
. (5b)
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Fig. 2. Manifolds of the two-states of the atom plus laser field
corresponding to the two-level system shown in the inset of
Figure 1.

Taking the matrix elements of operators
∧
A and

∧
B between

states |a〉 and |b〉, one obtains

〈a|
∧
A |a〉 = −γab 〈a| ρ |a〉 〈a|

∧
B |a〉 = 0 (6a)

〈b|
∧
A |b〉 = γab 〈a| ρ |a〉 〈b|

∧
B |b〉 = 0 (6b)

〈a|
∧
A |b〉 = −

γab

2
〈a| ρ |b〉 〈a|

∧
B |b〉 = −γ0 〈a| ρ |b〉 (6c)

〈b|
∧
A |a〉 = −

γab

2
〈b|ρ |a〉 〈b|

∧
B |a〉 = −γ0 〈b| ρ |a〉 . (6d)

Clearly while operator
∧
A accounts for the spontaneous

emission, the role of operator
∧
B is to modify only the re-

laxation rate of the off-diagonal elements as expected for
dipole dephasing processes [14]. Thus, equation (4) with
expressions (5a, 5b) is the standard density-matrix equa-
tion for a coherently driven two-level system with sponta-
neous emission and dipole dephasing.

In order to check the previous results, Figure 1 shows
the transient behavior of the excited state population
for an average of 500 MCWF simulations starting in the
ground state (solid line) and the corresponding density-
matrix solution (dotted line) when spontaneous emission
and dipole dephasing are included. One clearly sees the
complete agreement between both formalisms for an en-
semble of atoms.

Since the number of relevant atomic states is finite,
the formalism developed in reference [7] allows to inves-
tigate analytically the exchange of quanta between the
two-level atom and the driving electromagnetic field when
dissipative processes are taken into account. Let us con-
sider a quantum description of the laser field interacting
with the two-level system. Figure 2 shows the states of
the total system (i.e., atom plus laser field) grouped into
different manifolds ξ of two quasi-degenerate states. The
dynamics of the system is described by a series of coherent
evolution periods (represented by solid horizontal arrows)
interrupted at random times by quantum-jumps corre-
sponding to dissipative processes (represented by dashed
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Fig. 3. Stochastic evolution of the number of photons of the
coherent field for Ω = 3γab, ∆ = 0 and γ0 = 0 (a) or γ0 = γab
(b). The solid arrows in (b) mark the time of spontaneous emis-
sion processes. The rest of the quantum-jumps are associated
with dipole dephasing.

and dotted arrows). The coherent evolution periods are
called period (i, j) with i and j (= a, b) denoting the
atomic initial and final states. The initial and the final
states of these coherent evolution periods determine the
energy exchange between the atom and the driving field.
Thus, a one-photon loss process corresponds to a coher-
ent evolution period starting in the atomic ground state
immediately after a quantum-jump, and ending its coher-
ent evolution in the atomic excited state, i.e. period (b, a).
The subsequent quantum-jump can correspond to a spon-
taneous emission process (dashed arrow) or to a dipole
dephasing process (dotted arrow). In the first case, the
next coherent evolution starts in the atomic ground state
while in the second case it starts in the atomic excited
state. On the other hand, a one-photon gain process cor-
responds to a coherent evolution period starting in the
atomic excited state and ending its coherent evolution in
the atomic ground state by a quantum-jump associated to
a dipole dephasing process, i.e. period (a, b). Clearly, in
the absence of dipole dephasing processes (dotted arrows),
there are only one-photon loss processes since all coherent
evolution periods start in the atomic ground state and end
in the atomic excited state.

Figure 3 shows a MCWF simulation for the two-level
system of Figure 1 (inset) for two different rates of dipole
dephasing processes. We plot the variation in the number
of driving photons only at the time of the quantum-jumps
(circles), when it has a well-defined value. The dotted line
between quantum-jumps is plotted in order to guide the
eyes but lacks of any physical meaning. Indeed, during
the coherent evolution periods the system is in a super-
position of the two states of the corresponding manifold
and, therefore, the number of driving photons is not well-
defined. One can notice in Figure 3 that the number of

driving photons is decreasing in the two cases shown, as
expected for a two-level medium without population in-
version. However, while for γ0 = 0 (Fig. 3a) there are only
one-photon loss processes, for γ0 6= 0 (Fig. 3b) there are
also one-photon gain processes. In Figure 3b the quantum-
jumps describing spontaneous emission are marked with
a solid arrow. The rest of quantum-jumps are associated
with dipole dephasing. We notice that the main role of
dipole dephasing processes is to increase the fluctuations
in the driving field photon number. On the other hand, it
is well-known that the laser linewidth effects can be incor-
porated by introducing an extra dipole dephasing rate if
the laser fluctuations are due to phase-diffusion [15]. Our
approach suggests that laser linewidth effects associated
with fluctuations of the laser intensity could also be de-
scribed by the same procedure.

3 Inversionless amplification
in three-level systems

We now discuss along the lines developed in reference [7]
the effect of elastic collisions in amplification without pop-
ulation inversion (AWI) in the three-level cascade scheme
of Figure 4 (inset). The lower transition is driven by an
intense coherent field with Rabi frequency 2β and detun-
ing ∆β from atomic resonance, while the upper transition
is probed by a weak coherent field with Rabi frequency 2α
and detuning ∆α. We consider the following sources of dis-
sipation: spontaneous emission in the probed and driven
transitions with relaxation rates γ12 and γ23, respectively;
incoherent pumping in the probed transition with a two-
way population transfer rate Λ; and elastic collisions at
a rate γ0. By using the standard density-matrix formal-
ism, one can show for this configuration that for any set of
parameter values, neither the probed nor the driven tran-
sition are inverted in the steady-state [10]. This means
that in the steady state the upper state |1〉 has the small-
est population, therefore, there is no population inversion
at the one-photon probe transition |1〉 ↔ |2〉 nor at the
two-photon transition |1〉 ↔ |3〉. This particular scheme
in the absence of dipole dephasing processes was stud-
ied in [10] showing that, under appropriate driving field
detuning, a weak incoherent pump rate Λ is enough to
achieve on-resonance AWI if γ23 is larger than γ12 [16].
We will study now to which extent this result holds in
the presence of elastic collisions. As shown in Figure 4,
we make use of a quantum description of the two laser
fields by considering the number of photons of driving,
Nβ, and probe, Nα, fields. The states of the total system
atom plus laser fields are grouped into different manifolds
of three states. The dynamics of the system is pictured
in the MCWF formalism as consisting of a series of co-
herent evolution periods separated by quantum-jumps oc-
curring at random times. The coherent evolution periods
are called period (i, j) with i and j (= 1, 2, 3) denoting
the atomic initial and final states, respectively. As a gen-
eral feature, spontaneous emission and incoherent pump-
ing (dashed oblique lines) correspond to quantum-jumps
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connecting different manifolds while elastic collisions (dot-
ted circular lines) yield a new coherent evolution period
in the same manifold as the previous one. There are four
different periods that change the number of photons of the
probe field:

period(1, 2) −→∆Nβ = 0, ∆Nα = 1, (7a)

period(2, 1) −→∆Nβ = 0, ∆Nα = −1, (7b)

period(1, 3) −→∆Nβ = 1, ∆Nα = 1, (7c)

period(3, 1) −→∆Nβ = −1, ∆Nα = −1. (7d)

Periods (1, 2) and (2, 1) correspond, respectively, to one-
photon stimulated gain and loss processes, while periods
(1, 3) and (3, 1) account, respectively, for two-photon stim-
ulated gain and loss processes. Therefore, the mean change
of the probe field photon number per period can be split
in one-photon and two-photon contributions, 〈∆Nα〉 =
〈∆Nα〉1p+〈∆Nα〉2p, with 〈∆Nα〉1p = P (1, 2)−P (2, 1) and

〈∆Nα〉2p = P (1, 3) − P (3, 1), where P (i, j) is the proba-
bility that a coherent evolution period randomly selected
from a quantum trajectory starts in |i〉 and ends in |j〉.
As shown in [7], the probabilities P (i, j) read:

P (i, j) = P (i)Gj

∫ ∞
0

|cij |
2
dτ (8)

where P (i) is the probability that a coherent evolution
period starts in state |i〉, Gj is the total departure rate
from state |j〉 through a quantum-jump, i.e. G1 = γ12 +
Λ + γ0, G2 = γ23 + Λ + γ0 and G3 = γ0, and, finally,
cij is the probability amplitude to find the atom in state
|j〉 at time t + τ when it started its coherent evolution
in state |i〉 at time t, i.e. cij(τ) = 〈j| exp(−iHeffτ) |i〉.
For the cascade scheme under investigation, the effective
non-Hermitian Hamiltonian reads:

H
(2)
eff = (−iG1/2 +∆α +∆β) |1〉 〈1|

+ (−iG2/2 +∆β) |2〉 〈2| − iG3/2 |3〉 〈3|

+ α (|1〉 〈2|+ |2〉 〈1|) + β (|2〉 〈3|+ |3〉 〈2|) . (9)

The probability amplitudes cij satisfy the symmetric prop-

erty cij = cji since
(
H

(2)
eff

)†
=
(
H

(2)
eff

)∗
[7]. In the

steady-state regime, the probabilities P (i) can be obtained
through the recursive relation: P (i) =

∑
j P (j)Q(in :

i/in : j) being Q(in : i/in : j) the conditional proba-
bility to start a coherent evolution period in state |i〉 once
the previous one has started in state |j〉. In our case, tak-
ing α � Λ and β � γ0, γ12, Λ, one obtains after some
algebraic manipulation (see Appendix):

〈∆Nα〉1p = A [Λ (γ23 − γ12)− γ0γ12]

∫ ∞
0

|c12(τ)|2 dτ,

(10a)

〈∆Nα〉2p = −A [γ23 (Λ+ γ12) + γ0γ12]

∫ ∞
0

|c13(τ)|2 dτ,

(10b)

with A=(γ12 +Λ+ γ0)/[(γ12 +Λ)(γ23 + 2Λ+ 2γ0) +Λγ0].
Clearly, while two-photon processes always contribute to
probe laser absorption, one-photon processes can con-
tribute to amplification depending on the parameter val-
ues. It is important to remark that for all parameter val-
ues, population in state |1〉 is smaller than population in
state |2〉 which shows that there is an asymmetry between
one-photon processes [10]. The physical origin of this
asymmetry has been discussed in detail in reference [8].
In order to decrease the total number of two-photon pro-
cesses, one should tune the driving field relatively far
from |2〉–|3〉 resonance but maintaining the probe field
on-resonance. In this way, the two-photon resonance con-
dition is not fulfilled, which means

∫∞
0
|c13(τ)|2 dτ �∫∞

0
|c12(τ)|2 dτ , and, consequently, the required condition

for AWI reads: γ23 > γ12 and Λ > γ0γ12/ (γ23 − γ12).
Therefore, the main role of elastic collisions is to establish
an incoherent pump threshold below which resonant AWI
is not possible.
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4 Conclusions

In conclusion, we have presented a method to introduce
atomic dipole dephasing in the MCWF formalism and
demonstrated its equivalence to the standard density-
matrix formalism. In our method, the collapse of the wave-
function due to dipole dephasing can only lead to a fi-
nite number of states. Because a finite number of states
is involved in the quantum-jumps associated with dipole
dephasing, one can use the quantum-jump technique de-
veloped in reference [7]. We have applied this procedure
to discuss inversionless amplification in a cascade three-
level system in presence of elastic collisions showing that
their main role is to establish an incoherent pump thresh-
old below which amplification without population inver-
sion is not possible for a resonant probe field. Our anal-
ysis allowed us to calculate the relative contributions of
the various physical processes which are involved in inver-
sionless probe amplification, two-photon gain, two-photon
loss, induced emission and absorption. Many other inter-
esting problems in quantum-optics such as laser cooling
or the micromaser with dephasing processes accounting
for elastic collisions between the active atoms, or with a
buffer gas or even with the walls of the maser cavity could
be studied in a similar way.
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Appendix

In the limit α � Λ and β � γ0, γ12, Λ,∆β it is easy to
see from Figure 4 that the conditional probability to start
a coherent evolution period in state |i〉 once the previous
one has started in state |j〉, denoted by Q(in : i/in : j),
read:

Q(in : 1/in : 1) = γ0/ (γ0 + γ12 + Λ)

Q(in : 2/in : 1) = (γ12 + Λ) / (γ0 + γ12 + Λ)

Q(in : 3/in : 1) = 0 (A.1)

Q(in : 1/in : 2) = Q(in : 1/in : 3) = Λ/ (2γ0 + γ23 + Λ)

Q(in : 2/in : 2) = Q(in : 2/in : 3) = γ0/ (2γ0 + γ23 + Λ)

Q(in : 3/in : 2) = Q(in : 3/in : 3)

= (γ0 + γ23) / (2γ0 + γ23 + Λ) .

In the steady-state, the conditional probability P (i) to
start a coherent evolution period in state i of any manifold
is given by the recursive formula

P (i) =
∑
j

P (j)Q(in : i/in : j)

which means:

P (1) =
Λ (γ0 + γ12 + Λ)

(γ12 + Λ) (2γ0 + γ23 + 2Λ) + γ0Λ

P (2) =
(γ0 + Λ) (γ12 + Λ)

(γ12 + Λ) (2γ0 + γ23 + 2Λ) + γ0Λ
(A.2)

P (3) =
(γ0 + γ23) (γ12 + Λ)

(γ12 + Λ) (2γ0 + γ23 + 2Λ) + γ0Λ
·

Substituting (A.2) into equation (8) it is straightforward
to obtain the one-photon and two-photon contributions as
given in equations (10a, 10b).
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